RF8800 Series – Technical Data Sheet (TDS)

Product Description

This is an industrial-grade 3D printer designed for the overseas dental industry. It utilizes advanced HADIP™ DLP technology and a large build volume (768 × 432 mm), making it suitable for highefficiency mass production. The device achieves high-speed, high-stability printing through built-in sensors and intelligent control, and supports automatic resin replenishment and 24/7 unmanned operation. Multiple 4K DLP optical engine settings are also included.

Technical Specifications

Parameter	Specification
Build Volume	768 × 432 × 50 mm
Pixel Size	100 µm
Dimensional Accuracy	±80 µm
Light Source Wavelength	405 nm
Resolution	3840 × 2160 px × 4
Layer Thickness	0.08 – 0.15 mm
Projection Mode	Top-down Projection
Resin Vat	Replaceable
Relative Humidity	< 65%
Operating Temperature	24 – 28 °C (71.6 – 82.4 °F)
Machine Weight	Approx. 800 kg
Machine Dimensions (W × D × H)	1240 × 1270 × 1930 mm
Electrical Requirements	200-240 VAC, 50/60 Hz, Single Phase
Rated Power	3 kW
Controlling Software	RAYFORM 3D PRINT SYSTEM
Operating System	Windows 10
Supported File Formats	STL / BMP

Notes

Specifications are subject to change without prior notice. All performance data are measured under standard laboratory conditions.